Brookhaven Activities on ATLAS

Michael Begel

for the DOE Site Visit

September 8, 2009

Outline

- Detector & Operations
- Software & Performance
- Physics Analyses
- Computing & Support
- Upgrade R&D

Collider Physics at BNL

- BNL is a pioneer in hadron collider physics
 - CERN ISR in 1970's
 - DØ starting in 1980's, Run I and Run II
 - GEM detector design at SSC in early 1990's
 - A major contributor to ATLAS since mid-1990's

ATLAS Authors: 48
second after CERN (128)
8.7% of US, 1.9% of ATLAS
Core (Physicists): 16 FTE
Operations Program: 47 FTE
Other: 5 FTE
US ATLAS host laboratory

There are strong connections at BNL between physics, detector R&D, software, performance, and physics analysis supported by the computing infrastructure and the theory group

Essential strategy of the ATLAS program at BNL:

from detector to software to performance to physics

- major responsibilities in software & performance match detector & computing expertise guided by physics interests & analysis activities
- recognized by ATLAS with leadership roles; for example:
 - Muon Cathode Strip Chamber System Manager
 - Deputy Trigger Coordinator
 - 3 of 7 Physics Working Group co-conveners (SUSY, Higgs, Heavy Ion)
 - LAr Upgrade Coordinator

ATLAS Detector Research @ BNL

Success of our participation in the ATLAS experiment has built on:

- Physics:
 - original concepts
 - previous experiments
 - strong theory group
- Unique expertise in detector technology:
 - Liquid Argon Calorimeters
 - Cathode Strip Chambers
- Led to responsibilities during construction and commissioning phase well matched to technical expertise and capability at BNL
 - synergy between laboratory departments and divisions
 - large production capabilities
- Core of scientists coordinates larger technical effort leveraged by:
 - US ATLAS Operations Program
 - BNL Overhead Instrumentation Division

BNL Contributions to Detector & Operations

boldface indicates core program funding indicates Nuclear Physics — not HEP funded

Major responsibilities in detector construction, operation, and in technical coordination

Cathode Strip Chambers

CSC System Manager: Polychronakos
Farrell, Gordeev, Gratchev, Ikarios, Junnarkar,
Kandasamy, Muller, Nikolopoulos, O'Connor,
Polychronakos, Tcherniatine

Technical Coordination

TC Project Office: Lissauer (2001–9)

Duffin, Farrell, Gordeev, Lissauer,

Polychronakos, Stumer

Trigger

Deputy Trigger Coordinator: Rajagopalan (2009–)

Trigger Menu Coordinator: Rajagopalan LAr High Level Trigger Co-Convenor: Damazio

Zero Degree Calorimeter

System Manager: <a>® White

Steinberg, White

Liquid Argon Calorimeter

LAr Steering Group: Lanni, Ma
Chen, Damazio, Duffin, Hackenburg,
Kierstead, Lanni, Lissauer, Ma, Majewski,
Makowiecki, Muller, Radeka, Rahm,
Rajagopalan, Rescia, Sondericker, Tarrade,
Takai

some names only present for historical purposes

Liquid Argon Calorimeters

- BNL has responsibilites in:
 - Cryostat & Cryogenics
 - Cold Electronics
 - Feedthroughs
 - Pedestals, Baseplanes
 - Preamplifiers
 - Low Voltage Power Supplies (LVPS)
 - Detector/Readout Integration
- Status:
 - Installation completed in 2007
 - Currently being commissioned with cosmic-ray muons

- Operations Plans:
 - Front-End electronics integration
 - Develop backup options for long-term LVPS reliability
 - Calibrations & Performance
 - Remote monitoring LAr status from BNL

LAr Remote Monitoring

BNL plans to remotely monitor the status of the LAr during data-taking operations:

- Monitor detector status and analyze data dynamically
 - same infrastucture and interfaces as at P1
- Improve data quality by including collaborators not resident at CERN
 - leverage BNL expertise
- Conditions:
 - monitor without impacting operations
 - no control functions outside P1
- Remote monitoring shifts (convenient time zone for night shifts)
 - tested during software exercises and cosmic-ray data taking
 - Begel, Chen, Gordon, Ma, Majewski, Snyder

Cathode Strip Chambers for Forward Muon Spectrometer

BNL developed the technology originally for E814 and then for GEM @ SSC. Phenix @ RHIC and all LHC experiments use detectors based on concept.

- BNL has primary responsibility for CSC
 - overall management
 - design, construction, validation, installation
 - on-detector electronics
 - service installation and maintenance
- Status:
 - installation of chamber on Small Wheel completed Oct 2007
 - lowered into pit and installed by Mar 2008
 - currently being commissioned with cosmic-ray muons
- Operations Plans:
 - maintenance of overall system
 - data analysis for performance optimization

Technical Coordination

Brookhaven played an important role in Technical Coordination:

- Project Management
- Configuration Control
- Floor Stability Monitoring
- Access/Installation Tooling
- Component Placement Strategy and Survey
- Pixel Installation Beam Pipe

Lissauer

- TC Project Office Head (2001–9)
- ATLAS Technical Management Board
- ATLAS Upgrade Project Office Head
- US ATLAS Technical Coordination Manager

Lissauer left for NSF in February 2009

Polychronakos

- US ATLAS Technical Coordination Manager
- liasion between BNL technical personnel and ATLAS TC
- We will continue to support US engineering activities

BNL Contributions to Software & Performance

boldface indicates core program funding indicates Nuclear Physics — not HEP funded

Major responsibilities in software/performance well matched to our detector projects and software expertise

Liquid Argon Calorimeter

Commissioning Analysis Coor: **Ma** (2006–7) Software & Performance Coor: **Ma** (2007–)

Ma, Majewski, Rajagopalan, Snyder, Tarrade

Muon Spectrometer

Adams, Assamagan

Trigger

Menu Coordinator: Rajagopalan

SUSY Trigger Coordinator: Redlinger

LAr High Level Trigger Co-Convenor: Damazio

Begel, Damazio, Redlinger, Rajagopalan

ZDC

🧶 Baker, 🧶 Steinberg

Core Architecture

Assamagan, Ma, Rajagopalan, Snyder

Physics Analysis Tools

Coordinator: Assamagan (2004–7)

Assamagan, Mete, Pleier, Protopopescu, Snyder

e-gamma

US ATLAS co-convener: Snyder

Ma, Rajagopalan, Snyder,

Baker,

Jets and $\not\!\!E_T$

Begel, Majewski, Paige, Pleier

<u>Muons</u>

Adams, Assamagan

Taus

Protopopescu, Patwa, Tarrade

Tracking

Debbe, Steinberg

LAr Commissioning & e-gamma

Pixels Silicon

- BNL's strong involvement in LAr calorimeter led to software development and calibration of EM calorimeter
 - automated electronics calibration process
 - timing understood at 2 ns level from splash events
 - muon response uniformity < 1% using cosmic-ray muons</p>
- Developed initial software for identifying EM clusters, the basis of electrons and photons
- Derived position corrections for EM clusters (based on MC)
- In situ calibration using e^+e^- from Z and J/ψ decays (with SUNY Stony Brook)

Muon Stations

Jet Performance

BNL's physics interests and our expertise in calorimetry led to involvement in the understanding of jets at ATLAS

- Developed cell-based hadronic calibration weighting scheme, aka, "H1 weighting"
 - default jet calibration in ATLAS
- Understanding jet energy calibration through photon—jet balance
- Measuring calorimeter jet performance with jets made from tracks (in collaboration with SLAC)

ATLAS has chosen the anti- k_T jet algorithm for most analyses. Soyez, a BNL theorist, co-developed the algorithm.

Muon Performance

Our physics interests and expertise led to investment in muon software & performance

- Software development and maintenance
 - CSC detector
 - simulation for cavern backgrounds
 - muon reconstruction, selection, and validation
 - isolation tools
- Characterization of muon performance
- Study impact of pileup on isolation (Assamagan responsible for core software to overlay events for pileup studies)
- Rate studies of cavern backgrounds

20

where the street of the street of the

Eta cluster three-strip charge sum (1000 electron)

Tau Performance

We developed significant expertise in tau identification and physics on DØ. Now migrating to ATLAS.

- Hadronic τ identification relies on multi-variate analysis techniques to separate real τ leptons from jets, electrons, and muons
- BNL has contributed to core software, validation, and selection criteria
- Studied selections for Z o au au and $tar t o au\ell$ +jets
- Preparing for measurement of QCD multijet backgrounds

Trigger

Combined no T

- Rajagopalan coordinates the Trigger Menu effort: understanding the trigger rates, balancing performance/physics needs
- High Level Trigger (L2 & Event Filter) infrastructure and timing
- Re-designed and implemented the primary offline interface between the user and trigger information (in collaboration with DESY & UC Irvine)

jets+fjets

- Trigger Studies:
 - multijet trigger efficiency studies
 - new jet triggers for SUSY background control samples
 - new jet triggers for SUSY searches in dijet+ $\not\!\!E_T$ channel $(\tilde{q}_R \to q \chi_1^0)$

BNL Physics Analysis on ATLAS

- BNL has built a strong foundation for physics analysis
 - extensive expertise in detector, software, and performance
 - lead analysis software tool development
 - active in physics analysis since the beginning of ATLAS

- Higgs: **Assamagan** (2008–10)
- SUSY: Redlinger (2009–11)
- Heavy Ions: Steinberg (2008–10)

- Standard Model physics
- backgrounds to signatures of new physics

- requires increasing the number of postdocs for analysis
- agreement with Iowa State U. & U. Oregon to share support for students
- BNL physicists hold advisory role for students
- Our long-term interests are in searches for new physical phenomena
- Productive collaborations with BNL theorists
- LHC run in 2009–10
 - $\sqrt{s} = 7 10$ TeV and L_{inst} $\sim 10^{32} \Rightarrow 4$ interactions/crossing for $\int L = \mathcal{O}(100) \, \text{pb}^{-1}$

QCD Physics

Minimum Bias Physics

Steinberg

physics with extremely early data $[\mathcal{O}(1) \mu b^{-1}]$

 $d\sigma/dp_T$ for $Z/\gamma^* \to \mu^+\mu^-$

Adams, Begel, Yamamoto

study initial-state radiation [$\mathcal{O}(20)$ pb⁻¹]

Dijet Azimuthal Decorrelations

Begel, Majewski, Paige

precision test of pQCD with early data and initial jet energy scale $[\mathcal{O}(1) \, \text{pb}^{-1}]$

Inclusive μ , $\mu\mu$, multi- μ Spectrum

Adams, Redlinger

test detector and Monte Carlo in early data

Direct Photon Production via $\gamma^* \to \mu^+ \mu^-$

Adams, Begel, Paige

• High p_T low-mass Drell-Yan $\mu^+\mu^-$ production

Background samples are interesting $(\mathcal{O}(10) \, \text{pb}^{-1})$

• heavy-flavor and J/ψ production

• J/ψ +jet useful for low p_T jet energy scale calibration

• J/ψ is extremely clean b tag $(B \to J/\psi \to \mu^+\mu^-)$

• γ^* +jet provides clean calibration signal for low p_T jets [$\mathcal{O}(100)$ pb⁻¹]

connection with Kilgore from BNL HEP Theory Group

Top Physics

- The LHC is a top factory!
 - likely to see signatures of new physics
 - significant background to new physics (e.g., SUSY)
 - BNL very experienced in top physics from our DØ efforts

Begel, Gadfort, Mete, Pleier, Protopopescu, Rajagopalan, Searcy

- BNL concentrating on tt production in dilepton decay channel
 - $e\mu$, ee, $\mu\mu$ in collaboration with Bonn, U. Glasgow, UC Irvine, New York U., U. Oregon, Toronto, Stockholm, Yale
 - leverage our experience in hadronic τ decays
 - lepton + hadronic τ
 - lepton + isolated track increases sensitivity to new physics such as charged Higgs boson

Search for Supersymmetry

The search for SUSY has been a focus of the BNL group since the earliest days of ATLAS SUSY Group Co-Convener: Redlinger Begel, Majewski, Gibbard, Paige, Redlinger

- Concentrate on the ℓ+jets+ ₽_T channel
 - good reach prospects
 - better controlled background systematics
- Study data-driven methods to determine backgrounds:
 - $t\bar{t}$ in dilepton and ℓ +jets decay channels (ℓ +jets in collaboration with Indiana U.)
 - use γ +jets to estimate W+jets background
 - QCD multijet
- Extend QCD dijet azimuthal angle measurement to increase SUSY sensitivity
- Exploring collaboration with BNL theory group on V+jets production
 - understanding sources of theoretical uncertainties

Search for the Higgs Boson

The search for the Higgs Boson is a focus of our long-term plans for physics at ATLAS

Higgs Group Co-Convener: Assamagan Assamagan, Pleier, Protopopescu, Tarrade

- - sensitivity with $\mathcal{O}(200)\,\mathrm{pb}^{-1}$ at $\sqrt{s}=10\,\mathrm{TeV}$ collaboration with U. Arizona and Uppsala

 - Assamagan supervising a U. Arizona student
- lacksquare $H o ZZ^{\star} o \ell\ell\ell\ell$
 - sensitivity with $\mathcal{O}(1)$ fb⁻¹ at \sqrt{s} = 14 TeV
 - collaboration with Indiana U., Yale, Johannesburg, ICTP
- lacksquare H o au au
 - $Z \rightarrow \tau \tau$ has same final state and is a significant background
 - studying data-driven background techniques
 - sensitivity with $\mathcal{O}(1)$ fb⁻¹ at \sqrt{s} = 14 TeV
 - uses our expertise in τ performance

connections with Dawson & Kilgore from BNL HEP Theory Group

0.02

M_{rr} [GeV]

Analysis Support Center

- BNL is one of the US ATLAS Analysis Support Centers
 - provides US ATLAS physicists with critical mass for collaborating on complex physics analyses
 - utilizes BNL's expertise
- US ATLAS Physics Analysis Jamborees at BNL
 - facilitates interactions between US physicists
 - tutorials, working sessions, **US ATLAS Analysis Forum** meetings, informal discussions
- Host US ATLAS physicists
 - support university faculty, postdocs, and students
 - extensive access to BNL staff
 - this past year:
 - Columbia U.
- Iowa State U.
- UT Arlington

	U	l Dal	llas
0	ш	$\bigcap r \triangle$	aon

U. Oregon

US ATLAS Jamborees at BNL				
Date	Participants			
Jun, 2006	30			
Aug, 2006	34			
Dec, 2006	26			
May, 2007	35			
Aug, 2007	23			
Dec, 2007	53			
Mar, 2008	21			
Jun, 2008	19			
Sep, 2008	38			
Dec, 2008	28			
Mar, 2009	28			
Jun, 2009	26			

LHC@BNL: Joint Theory/Experiment Workshop

on Early Physics at the LHC

LHC@BNL Workshops

- open meeting jointly organized with BNL HEP Theory Group; same week as Jamboree
- facilitates interactions between experimentalists and theorists; fosters future collaboration
- current series focuses on early physics at LHC

BNL Computing & Software Applications Support

Largest and most productive ATLAS Tier 1

- 3500 job slots; 3.5 PB disk; 3.0 PB tape; 30+ Gbps
- 20 FTE
- BNL provides significant software applications support:
 - overall responsibility for ATLAS distributed data management & event storage
 - responsible for ATLAS nightly build and test systems
 - principal role developing & managing PanDA distributed production & analysis system for ATLAS & OSG

ATLAS has chosen PanDA as its primary tool

- US ATLAS Software Librarian
- Leadership roles in all focus areas
 - US ATLAS Project: 7.5 FTE software, 1.5 FTE operations
 - Open Science Grid (SciDAC) 2.5 FTE (0.5 'subcontracted' to UT Arlington)
 OSG Application Area Coordinator: Wenaus
- Most activities shifted from development to operations

Adams, Searcy, Wenaus

BNL Planned Contributions to the Detector Upgrade

ATLAS will need a major upgrade Phase I: augment Forward as integrated luminosity increases Muon Spectrometer study by Takai, et al **Muon Detectors** Tile Calorimeter Liquid Argon Calorimeter BNL leading three elements of the detector upgrade Phase 1 TDR/MOU Installation of Decision on Phase 2 Inner Detector Layout Phase 2 Toroid Margets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker 2009 2010 2011 2013 2014 2015 2017 2018 2012 2016 FY Phase II: 200fb-1 400fb⁻¹ 1-3x10³⁴ 00fb-1 250pb-1 50 fb-1 Total Integrated L 3x10³⁴ 1033 0.1-1x1034 LAr electronics Peak L upgrade L>1034 L~1035 Pixel/Strips Inner TRT layer. -700 fb⁻¹ LHC running Occupancy >60% Phase II: silicon staves for MDT TGC in the SW + period CSC L Ar/Tile Inner/Mid Radius of Inner Detector replacement Single Layer Electronics LW will not sustain When detectors are HEC GaAs Inefficiency ~25% rates at 1035 expected to fail Preamplifiers FCAL, HV drops, >1 ab-1 Inner B-Layer

space charge and Ar

boiling at 1035

Brookhaven Science Associates

>300 fb⁻¹

BNL Contributions to Forward Muon Upgrade

Adams, DeGeronimo, Gordeev, Ikarios, Nikolopoulos, Polychronakos, Tcherniatine

- Design of muon detectors and readout driven by cavern background rates:
 - cavern backgrounds could be as much as ×5 higher
- ×3 increase in luminosity makes operation of CSC marginal
- BNL joined CERN–RD51 which streamlines R&D on Micro-Pattern Gas Detectors (GEM and MicroMegas)
- Bulk MicroMegas offer a promising technology for large area, high rate/resolution detectors covering the needs of ATLAS Muon for Phases I & II
- BNL coordinating US ATLAS R&D participation on MicroMegas with:
 - U. of Arizona
 - U. of South Carolina
 - U. of Washington
- BNL leading development of front-end electronics for forward muon upgrade

BNL Contributions to LAr Electronics Upgrade

EMB ROD cfa

ATCA

- Current Front-End electronics designed for 10 years @ 10³⁴
 - will not survive much beyond 700 fb⁻¹
- BNL leading effort to define new readout architecture in collaboration with several EU institutions and US universities:
 - Columbia U.
 - U. Pennsylvania
 - Yale U.
 - Southern Method U.

LAr Upgrade Coordinator: Lanni Chen, Gadfort, Kierstead, Lanni, Makowiecki, Mead, Radeka, Rescia, Takai, Vernon

ROD (218 modules)

BNL Contributions to Silicon Tracker Upgrade

- Current silicon tracker will not survive much beyond 700 fb⁻¹
- lacktriangle Replacement will have $3 \times$ the area and $10 \times$ the channels
- Additional effort needed for new silicon tracker
 - BNL has experience with a number of silicon detectors (P238 at SPS, E896 at AGS, STAR-SVT at RHIC, PP2PP at RHIC)
 - BNL Instrum. Div. is unique source of expertise in rad. hard Si detectors
- ATLAS adopted several proposals that included BNL contributions
 - US proposal for stave concept (successful collaboration between LBNL, BNL, and US universities)
 - real and slow control protection of serially powered stave
- We are actively engaged in silicon strip R&D
 - leading stave prototyping efforts in US (with LBNL and Yale U.)
 - pioneered a new technique of testing of large sensors (with Stony Brook)
 - developed design for barrel and stave support structures
 - p-type sensor irradiation studies (with New York U.)
- US ATLAS is developing a working model with two main centers
 - pixels at LBNL/SLAC + western universities
 - strips at BNL + eastern universities
 - collaboration LBNL/BNL for common developments

Duffin, Lynn, Pleier

Staff Increases Proposed at 2009 Proton Research Review

- add 1 staff scientist and 1 post-doc each year to core program
- increase in funding needed for later years

- Split between physics analysis and detector R&D
 - attract promising young physicists with long-term career paths
- Students
 - share cost with universities
 - close guidance by staff
 - universities value this collaboration

		New Hires				FY12
Staff Scientists	Current	2009	2010	2011	2012	Total
Physics Analysis	4.0	0.5			0.5	5.0
Performance	2.5					2.5
Software	2.5					2.5
Analysis Support	1.0					1.0
LAr	1.5			0.5	0.5	2.5
Muon	0.8		0.5	0.5		1.8
TC	0.2					0.2
Si R&D	1.0	0.5	0.5			2.0
Total Staff:	13.5	1	1	1	1	17.5
Postdocs	Current	2009	2010	2011	2012	Total
Physics Analysis	0.5	0.5	0.5	0.5	0.5	2.5
Performance	0.5					0.5
LAr	1.0	0.5		0.5		2.0
Si			0.5		0.5	1.0
Total Postdocs:	2	1	1	1	1	6
Total Students:	0	2	1	1		4

Staff Increases Proposed at 2009 Proton Research Review

- add 1 staff scientist and 1 post-doc each year to core program
- increase in funding needed for later years

funded positions

- Split between physics analysis and detector R&D
 - attract promising young physicists with long-term career paths
- Students
 - share cost with universities
 - close guidance by staff
 - universities value this collaboration
 - 2 students from Iowa State U.
 - 1 student from U. Oregon will begin in Oct 2009

		New Hires				FY12
Staff Scientists	Current	2009	2010	2011	2012	Total
Physics Analysis	4.0	0.5			0.5	5.0
Performance	2.5					2.5
Software	2.5					2.5
Analysis Support	1.0					1.0
LAr	1.5			0.5	0.5	2.5
Muon	0.8		0.5	0.5		1.8
TC	0.2					0.2
Si R&D	1.0	0.5	0.5			2.0
Total Staff:	13.5		1	1	1	17.5
Postdocs	Current	2009	2010	2011	2012	Total
Physics Analysis	0.5	0.5	0.5	0.5	0.5	2.5
Performance	0.5					0.5
LAr	1.0	0.5		0.5		2.0
Si			0.5		0.5	1.0
Total Postdocs:	2	1	1	1	1	6
Total Students:	0	2	1	1		4

Conclusions

- BNL's contributions to ATLAS are critical to the success of the experiment
 - all BNL deliverables are operational; detector is being commissioned using cosmic-ray muons
 - major contributions in core software and performance
 - we will maintain the current level of commitments to ATLAS detector M&O, software, and performance
- We are eagerly awaiting collision data...
 - leading roles in physics analyses
 - prepared for detector commissioning and early physics possibilities
 - ready for exciting physics discoveries
- ...and working towards the ATLAS upgrade
 - leading efforts in LAr calorimeter, Forward Muon detector, and Silicon Tracker
- BNL committed to supporting US ATLAS program
 - largest and most productive Tier 1 in ATLAS
 - Analysis Support Center & Jamborees
 - host laboratory for US ATLAS
- With the proposed modest increase in staff, postdocs, and students,
 BNL will be able to further strengthen our contributions to ATLAS
 - reap physics discoveries in the LHC era
 - tackle the challenges of sLHC Upgrade
 - support and strengthen US ATLAS physics analysis and detector R&D program

ATLAS Leadership Roles

- 3 of 7 Physics Working Groups (SUSY, Higgs, Heavy Ion)
- Trigger Coordination
 - TC Project Office
- CSC System Manager
- Forward Muon Upgrade
- ZDC System Manager
- LAr Steering Group
- LAr Software & Performance
- LAr Upgrade
- Si Tracker Upgrade